Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Aging (Albany NY) ; 16(6): 5370-5386, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484139

RESUMO

Intervertebral disc degeneration (IVDD) has been considered a major cause of low back pain. Therefore, further molecular subtypes of IVDD and identification of potential critical genes are urgently needed. First, consensus clustering was used to classify patients with IVDD into two subtypes and key module genes for subtyping were identified using weighted gene co-expression network analysis (WGCNA). Then, key module genes for the disease were identified by WGCNA. Subsequently, SVM and GLM were used to identify hub genes. Based on the above genes, a nomogram was constructed to predict the subtypes of IVDD. Finally, we find that ROM1 is lowered in IVDD and is linked to various cancer prognoses. The present work offers innovative diagnostic and therapeutic biomarkers for molecular subtypes of IVDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Humanos , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Transcriptoma
2.
Aging (Albany NY) ; 16(6): 5050-5064, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38517363

RESUMO

PURPOSE: This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS: We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS: We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS: Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Núcleo Pulposo/metabolismo , Simulação de Acoplamento Molecular , Degeneração do Disco Intervertebral/metabolismo , Senescência Celular/fisiologia , Anel Fibroso/metabolismo
3.
Adv Sci (Weinh) ; 11(17): e2309032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403470

RESUMO

Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal. Tissue-specific changes are also identified. In NP, several fibrotic populations are increased in degenerated IVD, indicating tissue-remodeling. In degenerated AF, a novel disease-associated subset is identified, which expresses disease-promoting genes. It is associated with pathogenic biological processes and the main gene regulatory networks include thrombospondin signaling and FOXO1 transcription factor. In NP and AF cells thrombospondin protein promoted expression of genes associated with TGFß/fibrosis signaling, angiogenesis, and nervous system development. The data reveal new insights of both shared and tissue-specific changes in specific cell populations in AF and NP during IVD degeneration. These identified mechanisms and molecules are novel and more precise targets for IDD prevention and treatment.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia
4.
Spine J ; 24(2): 373-386, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797841

RESUMO

BACKGROUND CONTEXT: In clinical practice, acute trauma and chronic degeneration of the annulus fibrosus (AF) can promote further degeneration of the intervertebral disc (IVD). Therefore, it is critical to understand the AF repair process and its consequences on IVD. However, the lack of cost-effective and reproducible in vivo animal models of AF injury has limited research development in this field. PURPOSES: The purpose of this study was to establish and evaluate the utility of a novel animal model for full-thickness AF injury. Three foci were proposed: (1) whether this new modeling method can cause full-layer AF damage; (2) the repair processes and pathological changes in the damaged area after AF injury, and (3) the morphological and histological changes in the IVD are after AF injury. STUDY DESIGN/SETTING: In vivo rat AF injury model with characterization of AF damage repair, IVD degeneration. METHODS: A total of 72,300 g male rats were randomly assigned to one of the two groups: experimental or sham. Annulus fibrosus was separated layer by layer under the microscope with a #11 blade up to the AF- nucleus pulpous (NP) junction. The repair process of the horizontal AF and morphological changes in the sagittal IVD were evaluated with HE staining. Sirius red staining under polarized light. Immunofluorescence was conducted to analyze changes in the expression of COL1 and COL3 in the AF injury area and 8-OHdg, IL-6, MMP13, FSP1, and ACAN in the IVD. The disc height and structural changes after AF injury were measured using X-ray and contrast-enhanced micro-CT. Additionally, the resistance of the AF to stretching was analyzed using three-point bending. RESULTS: Annulus fibrosus-nucleus pulpous border was identified to stably induce the full-thickness AF injury without causing immediate NP injury. The AF repair process after injury was slow and expressed inflammation factors continuously, with abundant amounts of type III collagen appearing in the inner part of the AF. The scar at the AF lesion had decreased resistance to small molecule penetration and weakened tensile strength. Full-thickness AF injury induced disc degeneration with loss of disc height, progressive unilateral vertebral collapse, and ossification of the subchondral bone. Inflammatory-induced degeneration and extracellular matrix catabolism gradually appeared in the NP and cartilage endplate (CEP). CONCLUSIONS: We established a low-cost and reproducible small animal model of AF injury which accurately replicated the pathological state of the limited AF self-repair ability and demonstrated that injury to the AF alone could cause further degeneration of the IVD. CLINICAL RELEVANCE: This in vivo rat model can be used to study the repair process of the AF defect and pathological changes in the gradual degeneration of IVD after AF damage. In addition, the model provides an experimental platform for in vivo experimental research of potential clinical therapeutics.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Masculino , Animais , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Modelos Animais , Radiografia
5.
J Orthop Res ; 42(6): 1326-1334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38153697

RESUMO

Intervertebral disc herniation is a common spinal disorder that is often treated with discectomy when conservative measures fail. To devise therapeutic strategies for tears in the annulus fibrosus (AF), the regenerative capability of AF cells under spinal loading needs to be addressed. We hypothesized that the compressive loading associated with deformation in AF cells reduces synthetic and degradative activities in extracellular matrix and cell proliferation. We evaluated expression of key matrix molecules and cell proliferation by RT-PCR and immunohistochemistry by inner and outer bovine AF cells incubated under hydrostatic pressure (HP), arc-bending strain (Strain), and combined HP and Strain (HP/Strain) mimicking spinal loading. Inner AF cells showed significantly increased levels of aggrecan core protein, chondroitin sulfate N-acetylgalactosaminyltransferase-1, and tissue inhibitor of metalloproteinases-2 by 6 days under HP (p < 0.05), with a tendency toward increased matrix metalloproteinase-13. Outer AF cells demonstrated a significant decline in collagen type-2 under Strain and HP/Strain (p < 0.05) and a tendency toward suppression of collagen type-1 and elastin expression compared to HP and unloaded control. On the other hand, proliferating cell nucleus antigen increased significantly under Strain and HP/Strain in inner AF and declined under unloaded and HP in outer AF (p < 0.05). Immunohistology findings supported reductions in gene expressions of matrix molecules. Thus, changes in HP/Strain in AF appear to diminish synthetic and degradative activities while increasing cell proliferation. To promote regeneration, continuous overloading should be avoided, as it converts the synthetic activity to a state in which tissue repair is limited.


Assuntos
Anel Fibroso , Proliferação de Células , Matriz Extracelular , Pressão Hidrostática , Animais , Bovinos , Anel Fibroso/metabolismo , Matriz Extracelular/metabolismo , Células Cultivadas , Agrecanas/metabolismo , Estresse Mecânico , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Colágeno Tipo II/metabolismo
6.
ACS Biomater Sci Eng ; 10(1): 219-233, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38149967

RESUMO

Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Dor Lombar , Humanos , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Engenharia Tecidual , Terapia Baseada em Transplante de Células e Tecidos
7.
Biomed Pharmacother ; 165: 115224, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516017

RESUMO

Over the past decade, single-cell RNA sequencing (scRNA-seq) has revolutionized research on biological mechanisms of diseases. Moreover, this technique has been utilized to identify and characterize unique cell types and subpopulations, thereby illuminating cellular heterogeneity. The true value of scRNA-seq lies in its ability to detect transcriptional alterations or perturbed pathways within specific cell types under pathological conditions. In the context of intervertebral disc degeneration (IVDD), the pathophysiological foundation is largely rooted in inflammation. The primary target cells of IVDD are nucleus pulposus cells, annulus fibrosus cells, cartilage endplate cells, and macrophages. The advancements in scRNA-seq technology have triggered remarkable progress in IVDD treatment, leading to breakthroughs in the identification of cell subsets, functional analysis, novel therapeutic targets, and the differentiation and development of various cell types. This review is the first of its kind to introduce the application of scRNA-seq techniques in IVDD, with a focus on the most recent scRNA-seq studies that have defined the populations of various cell types and specific cell-cell interactions in IVDD. Furthermore, we highlight several promising future research directions for scRNA-seq in IVDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/patologia , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Núcleo Pulposo/metabolismo , Inflamação/metabolismo , Disco Intervertebral/metabolismo
8.
Arthritis Res Ther ; 25(1): 117, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420255

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is closely associated with the structural damage in the annulus fibrosus (AF). Aberrant mechanical loading is an important inducement of annulus fibrosus cells (AFCs) apoptosis, which contributes to the AF structural damage and aggravates IVDD, but the underlying mechanism is still unclear. This study aims to investigate the mechanism of a mechanosensitive ion channel protein Piezo1 in aberrant mechanical loading-induced AFCs apoptosis and IVDD. METHODS: Rats were subjected to lumbar instability surgery to induce the unbalanced dynamic and static forces to establish the lumbar instability model. MRI and histological staining were used to evaluate the IVDD degree. A cyclic mechanical stretch (CMS)-stimulated AFCs apoptosis model was established by a Flexcell system in vitro. Tunel staining, mitochondrial membrane potential (MMP) detection, and flow cytometry were used to evaluate the apoptosis level. The activation of Piezo1 was detected using western blot and calcium fluorescent probes. Chemical activator Yoda1, chemical inhibitor GSMTx4, and a lentiviral shRNA-Piezo1 system (Lv-Piezo1) were utilized to regulate the function of Piezo1. High-throughput RNA sequencing (RNA-seq) was used to explore the mechanism of Piezo1-induced AFCs apoptosis. The Calpain activity and the activation of Calpain2/Bax/Caspase3 axis were evaluated by the Calpain activity kit and western blot with the siRNA-mediated Calapin1 or Calpain2 knockdown. Intradiscal administration of Lv-Piezo1 was utilized to evaluate the therapeutic effect of Piezo1 silencing in IVDD rats. RESULTS: Lumbar instability surgery promoted the expression of Piezo1 in AFCs and stimulated IVDD in rats 4 weeks after surgery. CMS elicited distinct apoptosis of AFCs, with enhanced Piezo1 activation. Yoda1 further promoted CMS-induced apoptosis of AFCs, while GSMTx4 and Lv-Piezo1 exhibited opposite effects. RNA-seq showed that knocking down Piezo1 inhibited the calcium signaling pathway. CMS enhanced Calpain activity and elevated the expression of BAX and cleaved-Caspase3. Calpain2, but not Calpain1 knockdown, inhibited the expression of BAX and cleaved-Caspase3 and alleviated AFCs apoptosis. Lv-Piezo1 significantly alleviated the progress of IVDD in rats after lumbar instability surgery. CONCLUSIONS: Aberrant mechanical loading induces AFCs apoptosis to promote IVDD by activating Piezo1 and downstream Calpain2/BAX/Caspase3 pathway. Piezo1 is expected to be a potential therapeutic target in treating IVDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Ratos , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Apoptose/genética , Proteína X Associada a bcl-2/metabolismo , Calpaína , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Canais Iônicos/metabolismo
9.
Spine J ; 23(10): 1549-1562, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37339697

RESUMO

BACKGROUND CONTEXT: Intervertebral disc degeneration (IVDD) is an incurable, specific treatment-orphan disease with an increasing burden worldwide. Although great efforts have been made to develop new regenerative therapies, their clinical success is limited. PURPOSE: Characterize the metabolomic and gene expression changes underpinning human disc degeneration. This study also aimed to disclose new molecular targets for developing and optimizing novel biological approaches for IVDD. STUDY DESIGN: Intervertebral disc cells were obtained from IVDD patients undergoing circumferential arthrodesis surgery or from healthy subjects. Mimicking the harmful microenvironment of degenerated discs, cells isolated from the nucleus pulposus (NP) and annulus fibrosus (AF) were exposed to the proinflammatory cytokine IL-1ß and the adipokine leptin. The metabolomic signature and molecular profile of human disc cells were unraveled for the first time. METHODS: The metabolomic and lipidomic profiles of IVDD and healthy disc cells were analyzed by high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Gene expression was investigated by SYBR green-based quantitative real-time RT-PCR. Altered metabolites and gene expression were documented. RESULTS: Lipidomic analysis revealed decreased levels of triacylglycerols (TG), diacylglycerol (DG), fatty acids (FA), phosphatidylcholine (PC), lysophosphatidylinositols (LPI) and sphingomyelin (SM), and increased levels of bile acids (BA) and ceramides, likely promoting disc cell metabolism changing from glycolysis to fatty acid oxidation and following cell death. The gene expression profile of disc cells suggests LCN2 and LEAP2/GHRL as promising molecular therapeutic targets for disc degeneration and demonstrates the expression of genes related to inflammation (NOS2, COX2, IL-6, IL-8, IL-1ß, and TNF-α) or encoding adipokines (PGRN, NAMPT, NUCB2, SERPINE2, and RARRES2), matrix metalloproteinases (MMP9 and MMP13), and vascular adhesion molecules (VCAM1). CONCLUSIONS: Altogether, the presented results disclose the NP and AF cell biology changes from healthy to degenerated discs, allowing the identification of promising molecular therapeutic targets for intervertebral disc degeneration. CLINICAL SIGNIFICANCE: Our results are relevant to improving current biological-based strategies aiming to repair IVD by restoring cellular lipid metabolites as well as adipokines homeostasis. Ultimately, our results will be valuable for successful, long-lasting relief of painful IVDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Serpina E2/metabolismo , Disco Intervertebral/metabolismo , Anel Fibroso/metabolismo , Núcleo Pulposo/metabolismo , Adipocinas/metabolismo
10.
J Orthop Res ; 41(12): 2667-2684, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37132373

RESUMO

Intervertebral disc degeneration (IDD) is a leading cause of low back pain. The inflammatory responses caused by aberrant mechanical loading are one of the major factors leading to annulus fibrosus (AF) degeneration and IDD. Previous studies have suggested that moderate cyclic tensile strain (CTS) can regulate anti-inflammatory activities of AF cells (AFCs), and Yes-associated protein (YAP) as a mechanosensitive coactivator senses diverse types of biomechanical stimuli and translates them into biochemical signals controlling cell behaviors. However, it remains poorly understood whether and how YAP mediates the effect of mechanical stimuli on AFCs. In this study, we aimed to investigate the exact effects of different CTS on AFCs as well as the role of YAP signaling involving in it. Our results found that 5% CTS inhibited the inflammatory response and promoted cell growth through inhibiting the phosphorylation of YAP and nuclear localization of NF-κB, while 12% CTS had a significant proinflammatory effect with the inactivation of YAP activity and the activation of NF-κB signaling in AFCs. Furthermore, moderate mechanical stimulation may alleviate the inflammatory reaction of intervertebral discs through YAP-mediated suppression of NF-κB signaling in vivo. Therefore, moderate mechanical stimulation may serve as a promising therapeutic approach for the prevention and treatment of IDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Anel Fibroso/metabolismo , NF-kappa B/metabolismo , Disco Intervertebral/metabolismo , Transdução de Sinais , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Inflamação/metabolismo
11.
PeerJ ; 10: e13826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935259

RESUMO

Background: Intervertebral disc degeneration (IVDD) is closely associated with senescence. Annulus fibrosus (AF) cell senescence is a crucial driver of AF tissue tearing and fissures, thereby exacerbating IVDD. Increased advanced oxidative protein products (AOPPs) were found in human degenerative discs and aged rat discs and may be involved in IVDD. This study aimed to explore the mechanism of AOPPs-induced senescence in AF cells. Methods: The pathological effects of AOPPs in vivo were investigated using a rat lumbar disc persistent degeneration model and a rat caudal disc puncture model. Rat primary AF cells were selected as in vitro models, and AOPPs were used as direct stimulation to observe their pathological effects. Setanaxb (NOX1/4 inhibitor), apocynin (NADPH oxidase inhibitor) and adenovirus (ADV) packed NADPH oxidase 4 (NOX4) specific shRNAs were used for pathway inhibition, respectively. Finally, adeno-associated viruses (AAVs) packed with NOX4-specific blocking sequences were used to inhibit the in vivo pathway. Results: AOPPs accumulated in the rat lumbar and caudal degenerative discs. Intra-discal loading of AOPPs up-regulated the expression of NOX4, p53, p21, p16, IL-1ß, and TNF-α, ultimately accelerating IVDD. Exposure of AOPPs to AF primary cells up-regulated NOX4 expression, induced phosphorylation of mitogen-activated protein kinases (MAPK), triggered senescence and increased IL-1ß and TNF-α. Apocynin, setanaxib, and ADV pre-cultured AF cells abrogated AOPPs-induced senescence. AAV-mediated inhibition of NOX4 expression in vivo reduced the expression of p53, p21, p16, IL-1ß and TNF-α in vivo and delayed IVDD. Conclusions: AOPPs induced AF cell senescence through a NOX4-dependent and MAPK-mediated pathway.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Ratos , Humanos , Animais , Anel Fibroso/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidase 4/genética , Produtos da Oxidação Avançada de Proteínas/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Senescência Celular
12.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887297

RESUMO

Excessive mechanical loading is a major cause of spinal degeneration, typically originating from a tear in the annulus fibrosus (AF). Endoplasmic reticulum (ER) stress and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome have been implicated in the pathogenesis of intervertebral disc (IVD) degeneration. However, the causal relationship between the mechanical stretching of AF cells and the NLRP3 inflammasome response associated with ER stress remains scarce. To elucidate the pathogenesis and regulatory mechanisms of mechanical stretch-induced IVD degeneration, human AF cell lines were subjected to different degrees of cyclic stretching to simulate daily spinal movements. Our results indicated that 15% high cyclic stretch (HCS) induced the expression of NLRP3 and interleukin-1 beta (IL-1ß) and was also responsible for the increased expression of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2) and reactive oxygen species (ROS) in human AF cells. In addition, HCS increased the expression of glucose-regulated protein 78 (GRP78), an ER stress chaperone, which was neutralized with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor. In addition, HCS was found to induce thioredoxin-interacting protein (TXNIP) expression and NLRP3 inflammasome activation, which can be suppressed by si-NOX2 or the NOX2 inhibitor GSK2795039. Consequently, HCS upregulated ER stress and ROS production, leading to increased NLRP3 and IL-1ß expression in human AF cells, and may further accelerate IVD degeneration.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Anel Fibroso/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Oxid Med Cell Longev ; 2022: 2912276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795857

RESUMO

Background: Abnormal Smad7 expression can lead to apoptosis in different cell types. Previously, we found high expression of Smad7 in rat degenerative discs. However, the exact role of Smad7 in the apoptosis of disc cells and the possible underlying mechanism remain unclear. Methods: Degenerative and nondegenerative human lumbar intervertebral discs were collected from patients during operation. The expressions of SMAD7 mRNA and protein in the different components of these discs were measured with real-time PCR and Western blotting, respectively. Annulus fibrosus (AF) cells were isolated and cultivated from the discs of young healthy rats. Smad7 in the AF cells was overexpressed with adenovirus and knocked down with siRNA. IL-1ß was used to induce apoptosis in the AF cells. Loss-and-gain cell function experiments were performed to show the effect of Smad7 on the apoptosis of AF cells. The function recovery experiments were performed to verify whether Smad7 regulates the apoptosis of AF cells through the mitochondria-mediated pathway. Results: Both the mRNA and protein expressions of Smad7 were significantly higher in the different components of human degenerative discs than in those of the nondegenerative discs. IL-1ß stimulated apoptosis while upregulating the Smad7 expression in the AF cells in vitro. Overexpression of Smad7 in AF cells exaggerated the IL-1ß-induced apoptosis in the cells while knockdown of Smad7 expression suppressed this apoptosis. With the exaggerated apoptosis in the AF cells with Smad7 overexpression, both active cleaved caspase-3 and cleaved caspase-9, the ratio of Bax/Bcl-2, and Cyt-c increased significantly. However, the inhibitor of caspase-9, Z-LEHD-FMK, significantly diminished the apoptosis in these cells. Conclusion: Smad7 is highly expressed in human degenerative discs and participates in IL-1ß-induced apoptosis of rat AF cells via the mitochondria pathway. Smad7 may be a potential target for the prevention and treatment of degenerative disc disease.


Assuntos
Anel Fibroso , Interleucina-1beta , Degeneração do Disco Intervertebral , Proteína Smad7 , Animais , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Apoptose/fisiologia , Caspase 9/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteína Smad7/biossíntese , Proteína Smad7/genética , Proteína Smad7/metabolismo
14.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409374

RESUMO

Previous research has identified an association between external radiation and disc degeneration, but the mechanism was poorly understood. This study explores the effects of ionizing radiation (IR) on inducing cellular senescence of annulus fibrosus (AF) in cell culture and in an in vivo mouse model. Exposure of AF cell culture to 10-15 Gy IR for 5 min followed by 5 days of culture incubation resulted in almost complete senescence induction as evidenced by SA-ßgal positive staining of cells and elevated mRNA expression of the p16 and p21 senescent markers. IR-induced senescent AF cells exhibited increased matrix catabolism, including elevated matrix metalloproteinase (MMP)-1 and -3 protein expression and aggrecanolysis. Analogous results were seen with whole body IR-exposed mice, demonstrating that genotoxic stress also drives disc cellular senescence and matrix catabolism in vivo. These results have important clinical implications in the potential adverse effects of ionizing radiation on spinal health.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Anel Fibroso/metabolismo , Senescência Celular , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Radiação Ionizante
15.
Oxid Med Cell Longev ; 2022: 6179444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251479

RESUMO

Oxidative stress and apoptosis play important roles in the pathogenesis of various degenerative diseases. Previous studies have shown that naringin can exert therapeutic effects in multiple degenerative diseases by resisting oxidative stress and inhibiting apoptosis. Although naringin is effective in treating degenerative disc disease, the underlying mechanism remains unclear. This study is aimed at investigating the effects of naringin on oxidative stress, apoptosis, and intervertebral disc degeneration (IVDD) induced by cyclic stretch and the underlying mechanisms in vitro and in vivo. Abnormal cyclic stretch was applied to rat annulus fibrosus cells, which were then treated with naringin, to observe the effects of naringin on apoptosis, oxidative stress, mitochondrial function, and the nuclear factor- (NF-) κB signaling pathway. Subsequently, a rat model of IVDD induced by dynamic and static imbalance was established to evaluate the effects of naringin on the degree of degeneration (using imaging and histology), apoptosis, and oxidative stress in the serum and the intervertebral disc. Naringin inhibited the cyclic stretch-induced apoptosis of annulus fibrosus cells, reduced oxidative stress, improved mitochondrial function, enhanced the antioxidant capacity, and suppressed the activation of the NF-κB signaling pathway. Additionally, it reduced the degree of IVDD (evaluated using magnetic resonance imaging) and the level of oxidative stress and inhibited apoptosis and p-P65 expression in the intervertebral discs of rats. Thus, naringin can inhibit cyclic stretch-induced apoptosis and delay IVDD, and the underlying mechanism may be related to the inhibition of oxidative stress and activation of the NF-κB signaling pathway. Naringin may be an effective drug for treating degenerative disc disease.


Assuntos
Anel Fibroso/citologia , Anel Fibroso/metabolismo , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Flavanonas/administração & dosagem , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , NF-kappa B/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anel Fibroso/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Mitocôndrias/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
16.
Yonsei Med J ; 63(3): 199-210, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35184422

RESUMO

Intervertebral disc (IVD) degeneration is the main source of intractable lower back pain, and symptomatic IVD degeneration could be due to different degeneration mechanisms. In this article, we describe the molecular basis of symptomatic IVD degenerative disc diseases (DDDs), emphasizing the role of degeneration, inflammation, angiogenesis, and extracellular matrix (ECM) regulation during this process. In symptomatic DDD, pro-inflammatory mediators modulate catabolic reactions, resulting in changes in ECM homeostasis and, finally, neural/vascular ingrowth-related chronic intractable discogenic pain. In ECM homeostasis, anabolic protein-regulating genes show reduced expression and changes in ECM production, while matrix metalloproteinase gene expression increases and results in aggressive ECM degradation. The resultant loss of normal IVD viscoelasticity and a concomitant change in ECM composition are key mechanisms in DDDs. During inflammation, a macrophage-related cascade is represented by the secretion of high levels of pro-inflammatory cytokines, which induce inflammation. Aberrant angiogenesis is considered a key initiative pathologic step in symptomatic DDD. In reflection of angiogenesis, vascular endothelial growth factor expression is regulated by hypoxia-inducible factor-1 in the hypoxic conditions of IVDs. Furthermore, IVD cells undergoing degeneration potentially enhance neovascularization by secreting large amounts of angiogenic cytokines, which penetrate the IVD from the outer annulus fibrosus, extending deep into the outer part of the nucleus pulposus. Based on current knowledge, a multi-disciplinary approach is needed in all aspects of spinal research, starting from basic research to clinical applications, as this will provide information regarding treatments for DDDs and discogenic pain.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Matriz Extracelular/metabolismo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613651

RESUMO

Intervertebral disc (IVD) degeneration is a major contributing factor for discogenic low back pain (LBP), causing a significant global disability. The IVD consists of an inner core proteoglycan-rich nucleus pulposus (NP) and outer lamellae collagen-rich annulus fibrosus (AF) and is confined by a cartilage end plate (CEP), providing structural support and shock absorption against mechanical loads. Changes to degenerative cascades in the IVD cause dysfunction and instability in the lumbar spine. Various treatments include pharmacological, rehabilitation or surgical interventions that aim to relieve pain; however, these modalities do not halt the pathologic events of disc degeneration or promote tissue regeneration. Loss of stem and progenitor markers, imbalance of the extracellular matrix (ECM), increase of inflammation, sensory hyperinnervation and vascularization, and associated signaling pathways have been identified as the onset and progression of disc degeneration. To better understand the pain originating from IVD, our review focuses on the anatomy of IVD and the pathophysiology of disc degeneration that contribute to the development of discogenic pain. We highlight the key mechanisms and associated signaling pathways underlying disc degeneration causing discogenic back pain, current clinical treatments, clinical perspective and directions of future therapies. Our review comprehensively provides a better understanding of healthy IVD and degenerative events of the IVD associated with discogenic pain, which helps to model painful disc degeneration as a therapeutic platform and to identify signaling pathways as therapeutic targets for the future treatment of discogenic pain.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Humanos , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/etiologia , Dor Lombar/terapia , Anel Fibroso/metabolismo , Cartilagem/metabolismo , Dor nas Costas/patologia , Disco Intervertebral/metabolismo
18.
J Orthop Res ; 40(7): 1661-1671, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662464

RESUMO

The mouse outer annulus fibrosus (AF) was previously shown to contain CD146+ AF cells, while in vitro culture and exposure to transforming growth factor-beta (TGF-ß) further increased the expression of CD146. However, neither the specific function of CD146 nor the underlying mechanism of TGF-ß upregulation of CD146+ AF cells have been elucidated yet. In the current study, CD146 expression and its role in cultured human AF cells was investigated studying the cells' capacity for matrix contraction and gene expression of functional AF markers. In addition, TGF-ß pathways were blocked by several pathway inhibitors and short hairpin RNAs (shRNAs) targeting SMAD and non-SMAD pathways to investigate their involvement in TGF-ß-induced CD146 upregulation. Results showed that knockdown of CD146 led to reduction in AF cell-mediated collagen gel contraction, downregulation of versican and smooth muscle protein 22α (SM22α), and upregulation of scleraxis. TGF-ß-induced CD146 upregulation was significantly blocked by inhibition of TGF-ß receptor ALK5, and partially inhibited by shRNA against SMAD2 and SMAD4 and by an Protein Kinase B (AKT) inhibitor. Interestingly, the inhibition of extracellular signal-regulated kinases (ERK) pathway induced CD146 upregulation. In conclusion, CD146 was shown to be crucial to maintain the cell contractility of human AF cells in vitro. Furthermore, TGF-ß upregulated CD146 via ALK5 signaling cascade, partially through SMAD2, SMAD4, and AKT pathway, whereas, ERK was shown to be a potential negative modulator. Our findings suggest that CD146 can potentially be used as a functional marker in AF repair strategies.


Assuntos
Anel Fibroso , Antígeno CD146 , Fator de Crescimento Transformador beta , Anel Fibroso/metabolismo , Antígeno CD146/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt , Receptor do Fator de Crescimento Transformador beta Tipo I , Proteína Smad2 , Proteína Smad4 , Fator de Crescimento Transformador beta/metabolismo
19.
J Cell Physiol ; 237(2): 1266-1284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787318

RESUMO

Intervertebral disc degeneration (IDD) is a leading contributor to low back pain. The intervertebral disc (IVD) is composed of three tissue types: the central gelatinous nucleus pulposus (NP) tissue, the surrounding annulus fibrosus (AF) tissue, and the inferior and superior cartilage endplates. The IVD microenvironment is hypoxic, acidic, hyperosmotic, and low in nutrients because it is mostly avascular. The cellular processes that underlie IDD initiation and progression are still poorly understood. Specifically, a lack of understanding regarding NP cell metabolism and physiology hinders the development of effective therapeutics to treat IDD patients. Autophagy is a vital intracellular degradation process that removes damaged organelles, misfolded proteins, and intracellular pathogens and recycles the degraded components for cellular energy and function. NP cells have adapted to survive within their harsh tissue microenvironment using processes that are largely unknown, and we postulate autophagy is one of these undiscovered mechanisms. In this review, we describe unique features of the IVD tissue, review how physiological stressors impact autophagy in NP cells in vitro, survey the current understanding of autophagy regulation in the IVD, and assess the relationship between autophagy and IDD. Published studies confirm autophagy markers are present in IVD tissue, and IVD cells can regulate autophagy in response to cellular stressors in vitro. However, data are still lacking to determine the exact mechanisms regulating autophagy in IVD cells. More in-depth research is needed to establish whether autophagy is necessary to maintain IVD cell health and validate autophagy as a relevant therapeutic target for treating IDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Anel Fibroso/metabolismo , Autofagia , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo
20.
Spine J ; 22(5): 877-886, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34902589

RESUMO

BACKGROUND CONTEXT: As no infiltrating macrophages exist in healthy discs, understanding the role of infiltrating macrophages including their polarity (M1 and M2 phenotypes) in intervertebral discs (IVDs) is important in the assessment of the pathomechanisms of disc degeneration. PURPOSE: To determine the relationship between infiltrating macrophage polarization and the progression of human cervical IVD degeneration. STUDY DESIGN: Histopathological study using harvested human cervical IVDs. METHODS: IVDs collected during anterior cervical decompression from 60 patients were subjected to immunostaining and immunoblotting. The samples were classified as type 0-3 according to the percentage of CD16- and CD206-positive cells to CD68-positive cells in the outer annulus fibrosus layer. The number of vessels and nerve fibers and the severity of chronic inflammation with a focus on inflammatory cell infiltration, fibrosis, and capillary proliferation were also assessed. RESULTS: The number of CD16-positive cells was the highest in type 2 IVDs, and was suppressed following the infiltration of CD206-positive cells. The degree of chronic inflammation was significantly higher in type 2 and type 3 IVDs, and the number of nerve fibers was significantly higher in type 3 IVDs. The endothelial cells of small vessels were positive for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 expression. Staining for tropomyosin receptor kinase (Trk)-A, Trk-B, and Trk-C was positive in aberrant fibers. In immunoblot analysis, the expression levels of these neurotrophic factors and receptors were significantly higher in type 2 and 3 IVDs. CONCLUSIONS: The polarity of macrophages around newly developed microvasculature might be altered with cervical IVD degeneration. A higher number of infiltrating M1 macrophages around the vessels was associated with chronic inflammation; however, their number got suppressed following the infiltration of M2 macrophages. The expression of neurotrophins in the capillaries of small vessels might contribute to neural ingrowth into degenerated IVDs. CLINICAL SIGNIFICANCE: Clarifying macrophages polarity change around new microvasculature associated with progression of IVD degeneration could enhance our understanding of the underlying mechanisms of neural ingrowth into degenerated IVDs and lead to development of a novel therapeutic target for prevention of IVD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Anel Fibroso/metabolismo , Vértebras Cervicais/patologia , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA